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Matière et champs électromagnétiques

Joseph Larmor, 1857-1942
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10.2.2 Relation constitutive magnétique
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10.1.2 Polarisation électrique et aimantation
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10.1.1 Champs d’état d’un système électromagnétique

Théorie locale : l’électromagnétisme est une théorie locale décrite en
termes de champs dépendant de la position x et du temps t qui sont
définis pour des systèmes locaux de volume infinitésimal centrés autour
de chaque point d’espace x. A l’échelle macroscopique, le système
thermodynamique est traité comme un milieu continu constitué de
systèmes locaux ponctuels.

Champs d’état : l’état du système est décrit par des champs vectoriels :

1 Champ électrique E (champ intensif)

2 Champ d’induction magnétique B (champ intensif)

3 Champ de déplacement électrique D (champ densitaire)

4 Champ magnétique H (champ densitaire)

5 Champ de polarisation électrique P (champ densitaire)

6 Champ d’aimantation M (champ densitaire)

Nature des champs : les champs intensifs E et B sont des champs
purement électromagnétiques et les champs densitaires P et M sont des
champs purement matériels et les champs densitaires D et H décrivent
les interactions entre la matière et les champs électromagnétiques.
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10.1.2 Polarisation électrique et aimantation

Polarisation électrique : le champ de polarisation électrique P
représente une densité de dipôles électriques p. Il existe deux types de
dipôles électriques :

1 Dipôles permanents p en absence de champ électrique

2 Dipôles induits p par le champ électrique E

Aimantation : le champ d’aimantation M représente une densité de
dipôles magnétiques m. Il existe deux types de dipôles magnétiques
(aimants) :

1 Dipôles permanents m en absence de champ d’induction magnétique

2 Dipôles induits m par le champ d’induction magnétique B

Hypothèses :

1 On considère uniquement une théorie électromagnétique linéaire dans
laquelle les champs densitaires D et H sont des fonctions linéaires des
champs E et B.

2 On considère uniquement des dipôles électriques induits p et des dipôles
magnétiques induits m pour éviter les hystérèses électriques et
magnétiques qui donnent lieu à des relations non-bijectives entre les
champs P et E et les champs M et H.
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10.2 Isolant et champs électromagnétiques
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10.2.1 Relation constitutive électrique

Polarisation électrique induite : par le champ électrique E dans la
matière.

P = ε0 χe ·E (10.1)

où χe est le tenseur de susceptibilité électrique de la matière et ε0 est la
permittivité électrique du vide. Ainsi, la polarisation électrique induite P
n’est pas nécessairement colinéaire au champ électrique E qui l’induit,
cela dépend des propriétés de la matière.

Relation constitutive électrique : entre les champs D, E et P

D = ε0E + P = ε0 (1 + χe) ·E (10.3)

1 Le champ D est la densité totale de dipôles électriques induits dans la
matière et le vide.

2 Le champ ε0E est la densité de dipôles électriques induits par le champ
électrique E dans le vide.

3 Le champ P = ε0 χe ·E est la densité de dipôles électriques induits par le
champ électrique E dans la matière.

Dr. Sylvain Bréchet 10 Matière et champs électromagnétiques 8 / 54



10.2.2 Relation constitutive magnétique

Aimantation induite : par le champ d’induction magnétique B dans la
matière.

M = µ−1
0 χm ·B (10.2)

où χm est le tenseur de susceptibilité magnétique de la matière et µ0 est
la perméabilité magnétique du vide. Ainsi, l’aimantation induite M n’est
pas nécessairement colinéaire au champ d’induction magnétique B, cela
dépend des propriétés de la matière.

Relation constitutive magnétique : entre les champs H, B et M

−H = −µ−1
0 B +M = −µ−1

0 (1− χm) ·B (10.4)

1 Le champ −H est la densité totale de dipôles magnétiques induits dans
la matière et le vide.

2 Le champ −µ−1
0 B est la densité de dipôles magnétiques induits par le

champ d’induction magnétique B dans le vide.

3 Le champ M = µ−1
0 χm ·B est la densité de dipôles magnétiques induits

par le champ d’induction magnétique B dans la matière.
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10.2.3 Densité d’énergie d’un isolant

Isolant : les champs d’état d’un isolant constitué de r substances
chimiques A avec des dipôles électriques induits p et des dipôles
magnétiques induits m sont les suivants :

1 Densité d’entropie s

2 Densités nA de substances chimiques A = 1, .., r

3 Polarisation électrique P

4 Aimantation M

Matière et champs électromagnétiques : les champs d’état d’un
système matériel constitué de r substances chimiques A avec des champs
électromagnétiques sont les suivants :

1 Densité d’entropie s

2 Densités nA de substances chimiques A = 1, .., r

3 Champ de déplacement électrique D

4 Champ d’induction magnétique B
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10.2.3 Densité d’énergie interne d’un isolant

Choix des champs d’état : le choix des champs D et B comme champs
d’état d’un système matériel avec des champs électromagnétiques est dû
au fait qu’il n’y a pas besoin de fournir d’énergie au système pour
maintenir fixe une distribution de charges électriques, qui est liée au
champ D par l’équation de Gauss. En revanche, il faut fournir de
l’énergie pour maintenir fixe une distribution de courants électriques, qui
est liée au champ H par l’équation d’Ampère. Par conséquent, on peut
adopter D comme champ d’état électrique, mais on doit choisir B, qui
est le champ conjugué au champ H, comme champ d’état magnétique.

Champs électromagnétiques : les champs d’état d’un système
constitué de champs électromagnétiques dans le vide sont les suivants :

1 Champ électrique E

2 Champ d’induction magnétique B
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10.2.3 Densité d’énergie interne d’un isolant

Densité d’énergie interne : matière et champs électromagnétiques

u tot (s, {nA},D,B) = Ts+
r∑

A=1

µA nA +
1

2
E ·D +

1

2
H ·B (10.5)

1 Densité d’énergie thermique (matière) Ts

2 Densité d’énergie chimique (matière)
r∑

A=1

µA nA

3 Densité d’énergie électrique (matière et vide)
1

2
E ·D

4 Densité d’énergie magnétique (matière et vide)
1

2
H ·B

Densité d’énergie interne : champs électromagnétiques dans le vide

u em (E,B) =
1

2
ε0E

2 +
1

2

B2

µ0
(10.6)

1 Densité d’énergie électrique (vide)
1

2
ε0E

2

2 Densité d’énergie magnétique (vide)
1

2

B2

µ0
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10.2.3 Densité d’énergie interne d’un isolant

Densité d’enthalpie magnétique : isolant

hm (s, {nA},P ,B) = u tot (s, {nA},D,B)− u em (E,B) (10.7)

Densité d’enthalpie magnétique : (10.5) et (10.6) dans (10.7)

hm (s, {nA},P ,B) = Ts+
r∑

A=1

µA nA +
1

2
P ·E − 1

2
M ·B (10.8)

Densité d’énergie interne : transformée de Legendre de
hm (s, {nA},P ,B) par rapport à B :

u (s, {nA},P ,M) = hm (s, {nA},P ,B)− ∂ hm
∂B

·B (10.9)

Dérivée partielle : de hm (10.8) donne (10.11)

∂ hm
∂B

= − ∂

∂B

(
1

2
M ·B

)
= − ∂

∂B

(
1

2
µ−1
0 χm ·B2

)
= −M

Densité d’énergie interne : (10.8) et (10.11) dans (10.9)

u (s, {nA},P ,M) = Ts+

r∑
A=1

µA nA +
1

2
P ·E +

1

2
M ·B (10.12)
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10.2.4 Energie interne d’un isolant

Différentielle de la densité d’énergie interne : (10.12) donne (10.13)

du (s, {nA},P ,M) =
∂u

∂s
ds+

r∑
A=1

∂u

∂nA
dnA +

∂u

∂P
· dP +

∂u

∂M
· dM

Champs intensifs : température T , potentiel chimique µA, champ
électrique E et champ d’induction magnétique B

T =
∂u

∂s
µA =

∂u

∂nA
E =

∂u

∂P
B =

∂u

∂M
(10.14)

Différentielle de la densité d’énergie interne : (10.14) dans (10.13)

du (s, {nA},P ,M) = T ds+

r∑
A=1

µA dnA +E · dP +B · dM (10.15)

Différentiation de l’énergie interne : (10.12)

du (s, {nA},P ,M) = T ds+ s dT +

r∑
A=1

(µA dnA + nA dµA)

+ P · dE +E · dP +B · dM +M · dB
(10.16)
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10.2.4 Energie interne d’un isolant

Relation de Gibbs-Duhem : (10.16) - (10.15)

s dT +
r∑

A=1

nA dµA + P · dE +M · dB = 0 (10.17)

Variables d’état extensives : isolant homogène et uniforme (10.18)

S =

∫
V

dV s NA =

∫
V

dV nA p =

∫
V

dV P m =

∫
V

dV M

Energie interne : isolant homogène et uniforme

U (S, {NA},p,m) =

∫
V

dV u (s, {nA},P ,M) (10.19)

Intégrale de la densité d’énergie interne : (10.12) sur le volume∫
V

dV u (s, {nA},P ,M) = T

∫
V

dV s+
r∑

A=1

µA

∫
V

dV nA (10.20)

+
1

2

(∫
V

dV P

)
·E +

1

2

(∫
V

dV M

)
·B
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10.2.4 Energie interne d’un isolant

Energie interne : isolant homogène et uniforme (10.18) - (10.20)

U (S, {NA},p,m) = TS +
r∑

A=1

µANA +
1

2
p ·E +

1

2
m ·B (10.21)

1 Energie thermique TS

2 Energie chimique
r∑

A=1

µANA

3 Energie électrique des dipôles induits
1

2
p ·E

4 Energie magnétique des dipôles induits
1

2
m ·B
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10.2.5 Densités d’énergie libre, d’enthalpies et d’enthalpies libres

Densités de potentiels thermodynamiques : les densités de potentiels
thermodynamiques sont obtenues à partir de la densité d’énergie interne
u (s, {nA},P ,M) par différentes transformations de Legendre des
champs d’état s, P et M .

Densité d’énergie libre : transformée de Legendre de u

f (T, {nA},P ,M) = u− ∂u

∂s
s = u− Ts

=

r∑
A=1

µA nA +
1

2
P ·E +

1

2
M ·B

(10.22)

Différentielle de la densité d’énergie libre : (10.22)

df (T, {nA},P ,M) = − s dT +
r∑

A=1

µA dnA +E · dP +B · dM (10.23)
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10.2.5 Densités d’énergie libre, d’enthalpie et d’enthalpies libres

Densité d’enthalpie électrique : transformée de Legendre de u

he (s, {nA},E,M) = u− ∂u

∂P
· P = u− E · P

= Ts+
r∑

A=1

µA nA −
1

2
P ·E +

1

2
M ·B

(10.24)

Différentielle de la densité d’enthalpie électrique : (10.24)

dhe (s, {nA},E,M) = T ds+

r∑
A=1

µA dnA − P · dE +B · dM (10.25)

Densité d’enthalpie magnétique : transformée de Legendre de u

hm (s, {nA},P ,B) = u− ∂u

∂M
·M = u− B ·M

= Ts+
r∑

A=1

µA nA +
1

2
P ·E − 1

2
M ·B

(10.26)

Différentielle de la densité d’enthalpie magnétique : (10.26)

dhm (s, {nA},P ,B) = T ds+
r∑

A=1

µA dnA +E · dP − M · dB (10.27)
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10.2.5 Densités d’énergie libre, d’enthalpie et d’enthalpies libres

Densité d’enthalpie électrique libre : transformée de Legendre de he

ge (T, {nA},E,M) = he −
∂he
∂s

s = he − Ts

=
r∑

A=1

µA nA −
1

2
P ·E +

1

2
M ·B

(10.28)

Différentielle de la densité d’enthalpie électrique libre : (10.28)

dge (T, {nA},E,M) = − s dT +

r∑
A=1

µA dnA− P ·dE+B ·dM (10.29)

Densité d’enthalpie magnétique libre : transf. de Legendre de hm

gm (T, {nA},P ,B) = hm −
∂hm
∂s

s = hm − Ts

=
r∑

A=1

µA nA +
1

2
P ·E − 1

2
M ·B

(10.30)

Différentielle de la densité d’enthalpie magnétique libre : (10.30)

dgm (T, {nA},P ,B) = − s dT +
r∑

A=1

µA dnA +E ·dP −M ·dB (10.31)
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10.2.6 Densités de forces

Analogie : en mécanique, une densité de force conservative est définie
comme l’opposé du gradient de la densité d’énergie potentielle. En
thermodynamique, une densité de force est définie comme l’opposé du
gradient de la densité du potentiel thermodynamique.

Gradient d’enthalpie électrique : (10.25)

∇he (E) =
∂he
∂E

∇E = −P ∇E (10.32)

Densité de force de polarisation électrique : exercée sur un isolant de
polarisation électrique P par un champ électrique inhomogène E

fp (E) = −∇he (E) = P ∇E (10.33)

Produit scalaire : composantes cartésiennes

P ∇E = Px ∇Ex + Py ∇Ey + Pz ∇Ez

Force de polarisation électrique : exercée sur un isolant de polarisation
électrique P par un champ électrique inhomogène E

Fp (E) =

∫
V

dV fp (E) =

∫
V

dV (P ∇E) (10.34)
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10.2.6 Densités de forces

Gradient d’enthalpie magnétique : (10.27)

∇hm (B) =
∂hm
∂B

∇B = −M∇B (10.35)

Densité de force d’aimantation : exercée sur un isolant d’aimantation
M par un champ d’induction magnétique inhomogène B

fm (B) = −∇hm (B) = M∇B (10.36)

Produit scalaire : composantes cartésiennes

M∇B = Mx ∇Bx +My ∇By +Mz ∇Bz

Force d’aimantation : exercée sur un isolant d’aimantation M par un
champ d’induction magnétique inhomogène B

Fm (B) =

∫
V

dV fm (B) =

∫
V

dV (M∇B) (10.37)
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10.3 Conducteur et champs électromagnétiques
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10.3.1 Densité d’énergie interne

Conducteur : les champs d’état d’un conducteur constitué de r
substances chimiques A électriquement chargées sont les suivants :

1 Densité d’entropie s

2 Densités nA de substances chimiques A = 1, .., r

3 Champ de déplacement électrique D

4 Champ d’induction magnétique B

Relation constitutive électrique : (10.3)

D = ε0 (1 + χe) ·E = ε ·E (10.38)

Tenseur de permittivité électrique :

ε = ε0 (1 + χe) (10.39)

Relation constitutive magnétique : (10.4)

H = µ−1
0 (1− χm) ·B = µ−1 ·B (10.40)

Tenseur de perméabilité magnétique :

µ−1 = µ−1
0 (1− χm) (10.41)
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10.3.1 Densité d’énergie interne

Conducteur : homogène et isotrope

ε = ε1 et µ−1 = µ−1 1

Relation constitutive électrique : homogène et isotrope (10.36)

D = εE (10.42)

Relation constitutive magnétique : homogène et isotrope (10.40)

H = µ−1B (10.43)

Champs intensifs : conjugués aux champs densitaires

E =
∂u

∂D
et H =

∂u

∂B
(10.45)

Différentielle de la densité d’énergie interne :

du (s, {nA},D,B) = T ds+
r∑

A=1

µA dnA +E · dD +H · dB (10.44)

Densité d’énergie interne :

u (s, {nA},D,B) = Ts+
r∑

A=1

µA nA +
D2

2ε
+
B2

2µ
(10.46)
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10.3.2 Conducteur et champs électrostatiques

Conducteur : homogène et isotrope de charge électrique Q et de volume
V int dans une enceinte à vide isolée de volume V = V int + V ext.

Hypothèse : le volume V ext extérieur au conducteur est suffisamment
grand par rapport au volume intérieur V int pour que le potentiel
électrostatique ϕ soit négligeable sur les parois.

Vext

E

x

S

Vint

Intégration : l’intégrale sur le volume extérieur au conducteur V ext

donne lieu à une intégrale de surface exprimée en termes de l’élément de
surface infinitésimal dS qui est défini positif lorsqu’il est orienté vers
l’intérieur du conducteur au point x.
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10.3.2 Conducteur et champs électrostatiques

Electrostatique : les constituants élémentaires du conducteur électrique
sont immobiles dans le référentiel de l’enceinte, ce qui implique que les
charges électriques sont fixes et qu’il n’y a pas de courant électrique. Par
conséquent, le système ne génère pas de champ d’induction magnétique.

Densité d’énergie interne : électrostatique d’un conducteur

u (s, {nA},D) = Ts+
r∑

A=1

µA nA +
D2

2ε
(10.47)

Relation constitutive électrique : homogène et isotrope

D = εE (10.42)

Densité d’énergie interne : (10.42) dans (10.47)

u (s, {nA},D) = Ts+
r∑

A=1

µA nA +
1

2
E ·D (10.48)

Champ électrique : opposé du gradient de potentiel électrostatique

E = −∇ϕ (10.49)
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10.3.2 Conducteur et champs électrostatiques

Densité d’énergie électrostatique : (10.49)

1

2
E ·D = − 1

2
(∇ϕ) ·D =

1

2
ϕ (∇ ·D)− 1

2
∇ · (ϕD) (10.50)

Energie électrostatique : intégrale de (10.50) sur V ainsi (10.51)

1

2

∫
V

dV (E ·D) =
1

2

∫
V

dV
(
ϕ (∇ ·D)

)
− 1

2

∫
V

dV
(
∇ · (ϕD)

)
Loi de Gauss : densité de charge électrique q

∇ ·D = q (10.52)

Champ électrique : nul à l’intérieur d’un conducteur

E = 0 (intérieur conducteur) (10.53)

Densité de charge électrique : nul à l’intérieur d’un conducteur

q = 0 (intérieur conducteur) (10.54)

ce qui signifie que les charges électriques mobiles à l’échelle
macroscopique se trouvent à la surface du conducteur.
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10.3.2 Conducteur et champs électrostatiques

Energie électrostatique : (10.51) à l’intérieur du conducteur

1

2

∫
V int

dV (E ·D) = 0

Densité de charge électrique : nul à l’extérieur d’un conducteur

q = 0 (extérieur conducteur)

Energie électrostatique : (10.51) à l’extérieur du conducteur

1

2

∫
V ext

dV (E ·D) = − 1

2

∫
V ext

dV
(
∇ · (ϕD)

)
Loi de Gauss : charge électrique à la surface Q (thm. de la divergence)∫
V ext

dV ∇ ·D = −
∫
S

dS ·D = Q (10.55)

où le signe négatif est lié au fait que l’élément dS est défini positif
lorsqu’il est orienté vers l’extérieur du conducteur.
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10.3.2 Conducteur et champs électrostatiques

Potentiel électrostatique : à la surface du conducteur

ϕ = cste (surface conducteur) (10.56)

Energie électrostatique : (10.49) à l’extérieur du conducteur

1

2

∫
V ext

dV (E ·D) =
1

2
Qϕ (10.58)

Energie interne : intégrale de la densité d’énergie interne

U (S, {NA}, Q) =

∫
V

dV u (s, {nA},D) (10.59)

Entropie et quantité de substance :

S =

∫
V int

dV s et NA =

∫
V int

dV nA (10.60)

Energie interne : conducteur avec des champs électrostatiques isotropes

U (S, {NA}, Q) = TS +
r∑

A=1

µANA +
1

2
ϕQ (10.61)
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10.3.2 Conducteur et champs électrostatiques

Différentielle de l’énergie interne :

dU (S, {NA}, Q) = T dS +
r∑

A=1

µA dNA + ϕdQ (10.62)

Enthalpie électrostatique : transformation de Legendre de U

He (S, {NA}, ϕ) = U − ∂U

∂Q
Q = U − ϕQ

= TS +

r∑
A=1

µANA −
1

2
Qϕ

(10.63)

Différentielle de l’enthalpie électrostatique :

dHe (S, {NA}, ϕ) = T dS +
r∑

A=1

µA dNA − Qdϕ (10.64)
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10.3.3 Condensateur plan

Condensateur plan : deux conducteurs plan séparés, de charge électrique
égale et opposée qui génèrent une différence de potentiel électrostatique.

Charges électriques : Q+ et Q− égales et opposées

Q = Q+ = −Q− > 0 (10.65)

Différence de potentiel électrostatique :

∆ϕ = ϕ+ − ϕ− > 0 (10.66)
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10.3.3 Condensateur plan

Energie électrostatique : condensateur plan

U (Q) =
1

2

(
ϕ+Q+ + ϕ−Q−) =

1

2
∆ϕQ (10.67)

Enthalpie électrostatique : condensateur plan

He (∆ϕ) = − 1

2

(
Q+ ϕ+ +Q− ϕ−) = − 1

2
Q∆ϕ (10.68)

Capacité électrostatique : C du condensateur plan (constante)

Q = C ∆ϕ (10.69)

Energie électrostatique : condensateur plan

U (Q) =
1

2

Q2

C
(10.70)

Enthalpie électrostatique : condensateur plan

He (∆ϕ) = − 1

2
C ∆ϕ2 (10.71)
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10.3.4 Conducteur et champs magnétostatiques

Conducteur : bobine conductrice dans une enceinte à vide de volume V
parcourue par une densité de courant électrique jq stationnaire générée à
l’extérieur de l’enceinte.

Hypothèse : la bobine est suffisamment longue par rapport au nombre
de spires qu’elle contient pour générer un champ d’induction magnétique
B uniforme à l’intérieur. Le champ magnétique d’induction magnétique
est négligeable à l’extérieur de la bobine.

B

B

j

j

Intégration : sur le plan mathématique, on va intégrer la densité
d’énergie magnétostatique sur le volume intérieur V int de la bobine en
utilisant le théorème de la divergence pour remplacer l’intégrale sur le
volume par une intégrale sur la surface de la bobine.
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10.3.4 Conducteur et champs magnétostatiques

Magnétostatique : le courant électrique dans la bobine est stationnaire,
ce qui signifie qu’il n’y a pas d’induction électromagnétique. Par
conséquent, le système ne génère pas de variation de champ électrique.

Densité d’énergie interne : magnétostatique d’une bobine

u (s, {nA},B) = Ts+
r∑

A=1

µA nA +
B2

2µ
(10.72)

Relation constitutive magnétique : homogène et isotrope

B = µH (10.43)

Densité d’énergie interne : (10.43) dans (10.72)

u (s, {nA},B) = Ts+
r∑

A=1

µA nA +
1

2
H ·B (10.73)

Champ d’induction magnétique : rotationnel du potentiel
magnétostatique A

B = ∇×A (10.74)
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10.3.4 Conducteur et champs magnétostatiques

Densité d’énergie magnétostatique : (10.74)

1

2
H ·B =

1

2
H · (∇×A) =

1

2
(∇×H) ·A+

1

2
∇ · (A×H) (10.75)

Energie magnétostatique : intégrale de (10.75) sur V donne (10.76)

1

2

∫
V

dV (H ·B) =
1

2

∫
V

dV
(

(∇×H)·A
)

+
1

2

∫
V

dV
(
∇·(A×H)

)
Loi d’Ampère : densité de charge courant électrique jq

∇×H = jq (10.77)

Champ d’induction magnétique : nul à l’extérieur de la bobine

B = 0 (extérieur bobine) (10.78)

Energie magnétostatique : (10.76) à l’extérieur de la bobine

1

2

∫
V ext

dV (H ·B) = 0
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10.3.4 Conducteur et champs magnétostatiques

Théorème de la divergence : où S est la surface de la bobine∫
V int

dV
(
∇ · (A×H)

)
=

∫
S

dS · (A×H) = 0

car les vecteurs dS et A sont colinéaires.

Energie magnétostatique : (10.76) à l’intérieur de la bobine

1

2

∫
V int

dV (H ·B) =
1

2

∫
V int

dV
(

(∇×H) ·A
)

Energie magnétostatique : (10.77) à l’intérieur de la bobine

1

2

∫
V int

dV (H ·B) =
1

2

∫
V int

dV (jq ·A) (10.79)

L’intégrale est non nulle uniquement dans le volume occupé par les spires
parcourues par une densité de courant électrique jq constante.

Volume infinitésimal d’une spire :

dV = dS · dr (10.80)
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10.3.4 Conducteur et champs magnétostatiques

j

r

S

A

Energie magnétostatique : (10.80) dans (10.79) dans la bobine

1

2

∫
V int

dV (H ·B) =
1

2

∫
S

dS · jq
∫
C

dr ·A (10.81)

Courant électrique : qui parcourt les spires de la bobine

I =

∫
S

dS · jq (10.82)

Flux magnétostatique : qui traverse l’ensemble de la bobine

Φ =

∫
C

dr ·A (10.83)
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10.3.4 Conducteur et champs magnétostatiques

Energie magnétostatique : (10.82) et (10.83) dans (10.79)

1

2

∫
V int

dV (H ·B) =
1

2
I Φ (10.85)

Energie interne : intégrale de la densité d’énergie interne

U (S, {NA},Φ) =

∫
V

dV u (s, {nA},B) (10.86)

Energie interne : bobine avec des champs magnétostatiques

U (S, {NA},Φ) = TS +
r∑

A=1

µANA +
1

2
I Φ (10.87)

Différentielle de l’énergie interne :

dU (S, {NA},Φ) = T dS +
r∑

A=1

µA dNA + I dΦ (10.88)
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10.3.4 Conducteur et champs magnétostatiques

Enthalpie magnétostatique : transformation de Legendre de U

Hm (S, {NA}, I) = U − ∂U

∂Φ
Φ = U − I Φ

= TS +
r∑

A=1

µANA −
1

2
Φ I

(10.89)

Différentielle de l’enthalpie magnétostatique :

dHm (S, {NA}, I) = T dS +
r∑

A=1

µA dNA − Φ dI (10.90)

Energie magnétostatique : bobine

U (Φ) =
1

2
I Φ (10.91)

Enthalpie magnétostatique : bobine

Hm (I) = − 1

2
Φ I (10.92)
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10.3.4 Conducteur et champs magnétostatiques

Inductuance magnétostatique : L de la bobine (constante)

Φ = LI (10.93)

Energie magnétostatique : bobine

U (Φ) =
1

2

Φ2

L
(10.94)

Enthalpie magnétostatique : bobine

Hm (I) = − 1

2
LI2 (10.95)
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10.4 Conducteur et champs électromagnétiques extérieurs

10.4 Conducteur et champs électromagnétiques extérieurs
10.4.1 Conducteur et champs électrostatiques extérieurs
10.4.2 Conducteur et champs magnétostatiques extérieurs
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10.4.1 Conducteur et champs électrostatiques extérieurs

Système : un conducteur électrique homogène de charge électrique Q
est enfermé et maintenu fixe dans une enceinte à vide électriquement
neutre soumise à un champ électrique extérieur E uniforme et constant.

Hypothèse : les champs électrostatiques extérieurs sont suffisamment
grands pour que les champs électrostatiques générés dans le système
puissent être négligés.

Conséquence : le champ électrique extérieur E est alors indépendant du
champ de déplacement électrique D.

Densité d’énergie interne : conducteur avec champ extérieur E

u (s, {nA},D) = Ts+
r∑

A=1

µA nA +E ·D (10.96)

Energie interne : conducteur de charge Q avec champ extérieur ϕ

U (S, {NA}, Q) = TS +
r∑

A=1

µANA +Qϕ (10.97)
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10.4.1 Conducteur et champs électrostatiques extérieurs

Charge électrique : conducteur constitué de r substances chimiques A

Q =
r∑

A=1

qANA (10.98)

où qA est la charge électrique d’une mole de substance A.

Potentiel électrochimique : substance chimique A

µ̄A = µA + qA ϕ (10.100)

Energie interne : (10.98) et (10.100) dans (10.97)

U (S, {NA}, Q) = TS +
r∑

A=1

µ̄ANA (10.99)

Energie électrostatique : champ extérieur ϕ

U (Q) = Q∆ϕ = C ∆ϕ2 =
Q2

C
(10.101)
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10.4.2 Conducteur et champs magnétostatiques extérieurs

Système : une bobine conductrice homogène parcourue par un courant
électrique I est enfermée et maintenue fixe dans une enceinte à vide
électriquement neutre soumise à un champ magnétique extérieur H
uniforme et constant.

Hypothèse : les champs magnétostatiques extérieurs sont suffisamment
grands pour que les champs magnétostatiques générés dans le système
puissent être négligés.

Conséquence : le champ magnétique extérieur H est alors indépendant
du champ d’induction magnétique B.

Densité d’énergie interne : bobine avec champ extérieur H

u (s, {nA},B) = Ts+
r∑

A=1

µA nA +H ·B (10.102)

Energie interne : bobine avec flux magnétique extérieur Φ

U (S, {NA}, Q) = TS +
r∑

A=1

µANA + I Φ (10.103)
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10.4.2 Conducteur et champs magnétostatiques extérieurs

Courant électrique : bobine constituée de r substances chimiques A

I =
r∑

A=1

IANA (10.104)

où IA est le courant électrique d’une mole de substance A.

Potentiel magnétochimique : substance chimique A

µ̄A = µA + IA Φ (10.106)

Energie interne : (10.104) et (10.106) dans (10.103)

U (S, {NA},Φ) = TS +
r∑

A=1

µ̄ANA (10.105)

Energie magnétostatique : flux extérieur Φ

U (Φ) = Φ I = LI2 =
Φ2

L
(10.107)
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10.5 Applications

10.5 Applications
10.5.1 Désaimantation adiabatique
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10.5.1 Désaimantation adiabatique

Désaimantation adiabatique : la désaimantation adiabatique est
souvent utilisée pour refroidir des échantillons à de très basses
températures.

T

S

A

BC

B
5B

10B

20B

Système : matériau constitué d’une seule substance chimique A
paramagnétique, uniforme, électriquement neutre en présence d’un
champ d’induction magnétique B.

Principe de fonctionnement : le système magnétique est amené à l’état
A. Il est en contact avec un bain thermique. En maintenant ce contact,
un champ d’induction magnétique B est appliqué au système pour
l’amener dans l’état B. Le contact avec le bain thermique est alors enlevé
et le champ d’induction magnétique est annulé ce qui amène le système
dans l’état C. La fonction S (T,B) prédit une chute de température.
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10.5.1 Désaimantation adiabatique

Différentielle de la densité d’énergie interne : (10.15)

du (s,M) = Tds+B · dM (10.108)

Loi de Curie : matériau paramagnétique

M =
C

µ0 T
B (10.109)

où C > 0 est la constante de Curie.

Démarche : pour analyser la désaimantation adiabatique, on examine les
deux processus suivants :

1 Processus isotherme : (A→ B) on détermine la variation de la densité
d’entropie s lorsque le champ d’induction magnétique B crôıt alors que la
température T reste constante (i.e. T = T0).

2 Processus adiabatique : (B → C) on détermine la variation de
température T quand le champ d’induction magnétique B décrôıt alors
que la densité d’entropie s reste constante (i.e. s = s0).
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10.5.1 Désaimantation adiabatique

1 Processus isotherme : A→ B

Différentielle de la densité d’entropie : s (T,M)

ds (T,M) =
∂s

∂T
dT +

∂s

∂M
· dM (10.113)

Différentielle de la densité d’énergie libre : (10.23)

df (T,M) = − s dT +B · dM (10.110)

Théorème de Schwarz : densité d’énergie libre f (T,M)

∂

∂M

(
∂f

∂T

)
=

∂

∂T

(
∂f

∂M

)
(10.111)

Relation de Maxwell : (10.109) et (10.103) dans (10.111)

− ∂s

∂M
=
∂B

∂T
=
µ0

C
M (10.112)
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10.5.1 Désaimantation adiabatique

Différentielle de la densité d’entropie : (10.112) dans (10.113) à
température constante T = T0

ds (T0,M) = − µ0

C
M · dM (10.114)

Densité d’entropie : intégrale de (10.114) de si (T0,Mi) à sf (T0,Mf )

sf (T0,Mf )− si (T0,Mi) = − µ0

2C

(
M2

f −M2
i

)
(10.115)

Densité d’entropie : (10.109) dans (10.115) où T = T0

sf (T0,Bf )− si (T0,Bi) = − C

2µ0 T 2
0

(
B2

f −B2
i

)
(10.116)

Processus isotherme : la densité d’entropie s décrôıt (i.e. sf < si)
lorsque la norme du champ d’induction magnétique ‖B‖ crôıt (i.e.
‖Bf‖ > ‖Bi‖).
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10.5.1 Désaimantation adiabatique

2 Processus adiabatique : B → C

Identité cyclique de dérivées partielles : s (T,B), T (s,B) et B (s, T )

∂s

∂T

∂T

∂B
· ∂B
∂s

= − 1 ainsi
∂T

∂B
= − ∂T

∂s

∂s

∂B
(10.117)

Différentielle de la densité d’enthalpie magnétique libre :

dgm (T,B) = − s dT − M · dB (10.118)

Théorème de Schwarz : gm (T,B)

∂

∂B

(
∂gm
∂T

)
=

∂

∂T

(
∂gm
∂B

)
(10.119)

Relation de Maxwell : (10.109) dans (10.119)

− ∂s

∂B
= − ∂M

∂T
=
CB2

µ0 T 2
(10.120)

Capacité thermique : à aimantation constante

cM (T,M) =
∂u

∂T

∣∣∣∣
M

= T
∂s (T,M)

∂T
(10.121)
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10.5.1 Désaimantation adiabatique

Capacité thermique : à aimantation constante

cM (T,M) = T
∂s (T,M)

∂T
(10.121)

Relation de Maxwell :

∂s

∂M
= − µ0

C
M (10.112)

Chaleur infinitésimale : (10.121) et (10.112)

T ds (T,M) = T
∂s

∂T
dT + T

∂s

∂M
· dM = cM dT −B · dM (10.122)

Différentielle de la densité d’énergie interne :

du (s,M) = Tds+B · dM (10.108)

Différentielle de la densité d’énergie interne : (10.121) dans (10.108)

du = cM dT (10.123)
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10.5.1 Désaimantation adiabatique

Densité de chaleur spécifique : à basse température T

cM (T ) =
a

µ0 T 2
(10.124)

où a > 0. Ce résultat requiert une démarche statistique.

Densité d’enthalpie magnétique :

hm (s,B) = u− B ·M (10.26)

Dérivée thermique : de la densité d’enthalpie magnétique

∂hm
∂T

∣∣∣∣
B

=
∂u

∂T

∣∣∣∣
M

− ∂

∂T
(M ·B) =

∂u

∂T

∣∣∣∣
M

− ∂

∂T

(
CB2

µ0 T

)
(10.125)

Capacité thermique : à champ d’induction magnétique constant

cB =
∂hm
∂T

∣∣∣∣
B

= T
∂s (T,B)

∂T
(10.126)

Relation de Mayer : paramagnétique (10.121) et (10.126) dans (10.125)

cB − cM =
CB2

µ0 T 2
(10.127)
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10.5.1 Désaimantation adiabatique

Capacité thermique : à champ B constant (10.124) dans (10.127)

cB =
a+ CB2

µ0 T 2

Dérivée thermique : de l’entropie (10.126)

∂s

∂T
=
cB
T

=
a+ CB2

µ0 T 3
ainsi

∂T

∂s
=

µ0 T
3

a+ CB2
(10.128)

Dérivée magnétique : de la temp. (10.120) et (10.128) dans (10.117)

∂T

∂B
=

C T B

a+ CB2
ainsi

dT

T
=

1

2

d
(
a+ CB2

)
a+ CB2

(10.129)

Rapport des températures : intégrale de Ti (s0,Bi) à Tf (s0,Bf )

Tf (s0,Bf )

Ti(s0,Bi)
=

√
a+ CB2

f

a+ CB2
i

(10.130)

Processus adiabatique : la température T décrôıt (i.e. Tf < Ti) lorsque
la norme du champ d’induction mag. ‖B‖ décrôıt (i.e. ‖Bf‖ < ‖Bi‖).
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